Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Cardiovasc Med (Hagerstown) ; 22(11): 818-827, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1450783

ABSTRACT

AIMS: Currently, there are few available data regarding a possible role for subclinical atherosclerosis as a risk factor for mortality in Coronavirus Disease 19 (COVID-19) patients. We used coronary artery calcium (CAC) score derived from chest computed tomography (CT) scan to assess the in-hospital prognostic role of CAC in patients affected by COVID-19 pneumonia. METHODS: Electronic medical records of patients with confirmed diagnosis of COVID-19 were retrospectively reviewed. Patients with known coronary artery disease (CAD) were excluded. A CAC score was calculated for each patient and was used to categorize them into one of four groups: 0, 1-299, 300-999 and at least 1000. The primary endpoint was in-hospital mortality for any cause. RESULTS: The final population consisted of 282 patients. Fifty-seven patients (20%) died over a follow-up time of 40 days. The presence of CAC was detected in 144 patients (51%). Higher CAC score values were observed in nonsurvivors [median: 87, interquartile range (IQR): 0.0-836] compared with survivors (median: 0, IQR: 0.0-136). The mortality rate in patients with a CAC score of at least 1000 was significantly higher than in patients without coronary calcifications (50 vs. 11%) and CAC score 1-299 (50 vs. 23%), P < 0.05. After adjusting for clinical variables, the presence of any CAC categories was not an independent predictor of mortality; however, a trend for increased risk of mortality was observed in patients with CAC of at least 1000. CONCLUSION: The correlation between CAC score and COVID-19 is fascinating and under-explored. However, in multivariable analysis, the CAC score did not show an additional value over more robust clinical variables in predicting in-hospital mortality. Only patients with the highest atherosclerotic burden (CAC ≥1000) could represent a high-risk population, similarly to patients with known CAD.


Subject(s)
COVID-19 , Coronary Artery Disease , Coronary Vessels , Hospital Mortality , Vascular Calcification/diagnostic imaging , COVID-19/diagnosis , COVID-19/mortality , Coronary Artery Disease/diagnosis , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Female , Heart Disease Risk Factors , Hospitalization/statistics & numerical data , Humans , Italy/epidemiology , Male , Middle Aged , Predictive Value of Tests , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Vascular Calcification/epidemiology
3.
J Am Coll Cardiol ; 76(18): 2043-2055, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-887081

ABSTRACT

BACKGROUND: Myocardial injury is frequent among patients hospitalized with coronavirus disease-2019 (COVID-19) and is associated with a poor prognosis. However, the mechanisms of myocardial injury remain unclear and prior studies have not reported cardiovascular imaging data. OBJECTIVES: This study sought to characterize the echocardiographic abnormalities associated with myocardial injury and their prognostic impact in patients with COVID-19. METHODS: We conducted an international, multicenter cohort study including 7 hospitals in New York City and Milan of hospitalized patients with laboratory-confirmed COVID-19 who had undergone transthoracic echocardiographic (TTE) and electrocardiographic evaluation during their index hospitalization. Myocardial injury was defined as any elevation in cardiac troponin at the time of clinical presentation or during the hospitalization. RESULTS: A total of 305 patients were included. Mean age was 63 years and 205 patients (67.2%) were male. Overall, myocardial injury was observed in 190 patients (62.3%). Compared with patients without myocardial injury, those with myocardial injury had more electrocardiographic abnormalities, higher inflammatory biomarkers and an increased prevalence of major echocardiographic abnormalities that included left ventricular wall motion abnormalities, global left ventricular dysfunction, left ventricular diastolic dysfunction grade II or III, right ventricular dysfunction and pericardial effusions. Rates of in-hospital mortality were 5.2%, 18.6%, and 31.7% in patients without myocardial injury, with myocardial injury without TTE abnormalities, and with myocardial injury and TTE abnormalities. Following multivariable adjustment, myocardial injury with TTE abnormalities was associated with higher risk of death but not myocardial injury without TTE abnormalities. CONCLUSIONS: Among patients with COVID-19 who underwent TTE, cardiac structural abnormalities were present in nearly two-thirds of patients with myocardial injury. Myocardial injury was associated with increased in-hospital mortality particularly if echocardiographic abnormalities were present.


Subject(s)
Coronavirus Infections/diagnostic imaging , Heart/diagnostic imaging , Myocardium/pathology , Pneumonia, Viral/diagnostic imaging , Ventricular Dysfunction/virology , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Coronary Angiography , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Echocardiography , Electrocardiography , Female , Heart/physiopathology , Humans , Italy/epidemiology , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , COVID-19 Drug Treatment
4.
Cardiovasc Res ; 116(14): 2239-2246, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-637779

ABSTRACT

AIMS: Whether pulmonary artery (PA) dimension and coronary artery calcium (CAC) score, as assessed by chest computed tomography (CT), are associated with myocardial injury in patients with coronavirus disease 2019 (COVID-19) is not known. The aim of this study was to explore the risk factors for myocardial injury and death and to investigate whether myocardial injury has an independent association with all-cause mortality in patients with COVID-19. METHODS AND RESULTS: This is a single-centre cohort study including consecutive patients with laboratory-confirmed COVID-19 undergoing chest CT on admission. Myocardial injury was defined as high-sensitivity troponin I >20 ng/L on admission. A total of 332 patients with a median follow-up of 12 days were included. There were 68 (20.5%) deaths; 123 (37%) patients had myocardial injury. PA diameter was higher in patients with myocardial injury compared with patients without myocardial injury [29.0 (25th-75th percentile, 27-32) mm vs. 27.7 (25-30) mm, P < 0.001). PA diameter was independently associated with an increased risk of myocardial injury [adjusted odds ratio 1.10, 95% confidence interval (CI) 1.02-1.19, P = 0.01] and death [adjusted hazard ratio (HR) 1.09, 95% CI 1.02-1.17, P = 0.01]. Compared with patients without myocardial injury, patients with myocardial injury had a lower prevalence of a CAC score of zero (25% vs. 55%, P < 0.001); however, the CAC score did not emerge as a predictor of myocardial injury by multivariable logistic regression. Myocardial injury was independently associated with an increased risk of death by multivariable Cox regression (adjusted HR 2.25, 95% CI 1.27-3.96, P = 0.005). Older age, lower estimated glomerular filtration rate, and lower PaO2/FiO2 ratio on admission were other independent predictors for both myocardial injury and death. CONCLUSIONS: An increased PA diameter, as assessed by chest CT, is an independent risk factor for myocardial injury and mortality in patients with COVID-19. Myocardial injury is independently associated with an approximately two-fold increased risk of death.


Subject(s)
COVID-19/diagnostic imaging , Heart Diseases/diagnostic imaging , Pulmonary Artery/diagnostic imaging , Radiography, Thoracic , Tomography, X-Ray Computed , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , Female , Heart Diseases/mortality , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Male , Middle Aged , Patient Admission , Predictive Value of Tests , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2/pathogenicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL